Nevanlinna-type characterizations for the Bloch space and related spaces
نویسندگان
چکیده
منابع مشابه
Composition Operators from Nevanlinna Type Spaces to Bloch Type Spaces
Let X and Y be complete metric spaces of analytic functions over the unit disk in the complex plane. A linear operator T : X → Y is a bounded operator with respect to metric balls if T takes every metric ball in X into a metric ball in Y . We also say that T is metrically compact if it takes every metric ball in X into a relatively compact subset in Y . In this paper we will consider these prop...
متن کاملStević-Sharma Operators from Area Nevanlinna Spaces to Bloch-Orlicz Type Spaces
Let D be the open unit disk in the complex plane C, H(D) the class of all analytic functions on D and φ an analytic self-map of D. In order to unify the products of composition, multiplication, and differentiation operators, Stević and Sharma introduced the following so-called Stević-Sharma operator on H(D): Tψ1,ψ2,φf(z) = ψ1(z)f(φ(z)) + ψ2(z)f ′(φ(z)), where ψ1, ψ2 ∈ H(D). By constructing some...
متن کاملOn characterizations of hyperbolic harmonic Bloch and Besov spaces
We define hyperbolic harmonic $omega$-$alpha$-Bloch space $mathcal{B}_omega^alpha$ in the unit ball $mathbb{B}$ of ${mathbb R}^n$ and characterize it in terms of $$frac{omegabig((1-|x|^2)^{beta}(1-|y|^2)^{alpha-beta}big)|f(x)-f(y)|}{[x,y]^gamma|x-y|^{1-gamma}},$$ where $0leq gammaleq 1$. Similar results are extended to little $omega$-$alpha$-Bloch and Besov spaces. These obtained...
متن کاملProducts of multiplication, composition and differentiation between weighted Bergman-Nevanlinna and Bloch-type spaces
Let φ and ψ be holomorphic maps on such that φ( ) ⊂ . Let Cφ,Mψ and D be the composition, multiplication and differentiation operators, respectively. In this paper, we consider linear operators induced by products of these operators from Bergman-Nevanlinna spaces AβN to Bloch-type spaces. In fact, we prove that these operators map AβN compactly into Bloch-type spaces if and only if they map A β...
متن کاملVolterra Composition Operators between Weighted Bergman-nevanlinna and Bloch-type Spaces
Let g and φ be holomorphic maps on D such that φ(D) ⊂ D. Define Volterra composition operators Jg,φ and Ig,φ induced by g and φ as Jg,φf(z) = Z z 0 (f ◦ φ) (ζ) (g ◦ φ)′ (ζ) dζ and Ig,φf(z) = Z z 0 (f ◦ φ)′ (ζ) (g ◦ φ) (ζ) dζ for z ∈ D and f ∈ H(D), the space of holomorphic functions on D. In this paper, we characterize boundedness and compactness of these operators acting between weighted Bergm...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the Edinburgh Mathematical Society
سال: 1990
ISSN: 0013-0915,1464-3839
DOI: 10.1017/s0013091500028947